二阶常系数非齐次线性微分方程的通解

大学必修课程 专栏收录该内容
4 篇文章 0 订阅

二阶常系数非齐次线性微分方程的通解

见课文原文:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面看转的一片博客文章:

二阶常系数非齐次线性微分方程的形式为:

							    ay″+by′+cy=f(x)

微分方程的通解 = 对应的二阶常系数齐次线性微分方程通解 + 自身的一个特解
简单记为:通解 = 齐次通解 + 特解。

二阶常系数齐次线性微分方程通解的解法:二阶常系数齐次线性微分方程的通解

下面只需要解出微分方程的特解即可

对应微分方程:

							    ay″+by′+cy=f(x)

右式f(x)有两种形式:
①f(x)= e λ x P m ( x ) e^{\lambda x}Pm(x) eλxPm(x)
此时微分方程对应的特解为:
y∗=xkRm(x)eλx

其中:在这里插入图片描述
得到这个不完全的特解后根据需要求出其不同阶的导数然后带入微分方程,即可解出特解中的系数,到这里,就得到了微分方程的完整特解,于齐次通解相加即的微分方程的通解。

例:
求微分方程 2y″+y′−y=2 e x e^{x} ex 的通解

解:
微分方程对应的齐次微分方程的特征方程为 2 r 2 r^{2} r2+r−1=0
可得通解:
y = c 1 e − x + c 2 e 1 2 x y=c^{_{1}}e^{-x}+c^{_{2}}e^{\frac{1}{2}x} y=c1ex+c2e21x

微分方程的右式f(x)=2e^x满足f(x)= e λ x e^{\lambda x} eλxPm(x)型,且λ=1,m=0λ=1,m=0,
所以,设特解为:

y∗=a e x e^{x} ex

所以y∗=a e x e^{x} ex、y∗′=a e x e^{x} ex、y∗″=a e x e^{x} ex
带入微分方程左式得:2a e x + a e x − a e x e^{x}+ae^{x}−ae^{x} ex+aexaex=2e^{x}

得:a=1

所以特解为:

y∗= e x e^{x} ex

微分方程的通解为:

y = c 1 e − x + c 2 e 1 2 x + e x y=c^{_{1}}e^{-x}+c^{_{2}}e^{\frac{1}{2}x}+e^{x} y=c1ex+c2e21x+ex

转自:https://blog.csdn.net/baishuiniyaonulia/article/details/79690752

  • 19
    点赞
  • 5
    评论
  • 40
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值